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Summary 

Bergman-type series solutions involving iterated complementary error integrals are constructed for nonlinear 
boundary-value problems associated with heat conduction in a region bounded internally by a cylindrical or 
spherical surface. In particular, a small-time solution is developed when the nonlinear boundary condition is of 
the Stefan-Boltzmann type. This solution is extended via Pad6 approximants. 

0. Introduction 

Nonlinear boundary-value problems involving heat conduction in a half-space were 
recently treated by Tao [1] via series expansions in terms of iterated error integrals. Here, 
Bergman-type series solutions for analogous boundary-value problems but involving 
media bounded internally by cylindrical or spherical surfaces are obtained by an 
approach motivated by the Karal-Keller asymptotic wave-front expansion method earlier 
employed in inhomogeneous elastodynamics and viscoelastodynamics as well as in the 
dynamics of initially-stressed neo-Hookean materials [2-5]. 

In a recent paper by Barclay, Moodie and Tait [6], Pad6 approximants were used to 
extend the range of validity of wave-front expansions in inhomogeneous viscoelastic 
media of hereditary type. Here, a small-time Bergman series solution of a nonlinear 
boundary-value problem in heat conduction is extended via Pad6-approximant methods. 

1. The Bergman-type expansions 

The nonlinear boundary-value problem considered here is specified by 

~Or r2~+a =pcr 2~+10u r > a ,  t>0"  
-~r Ot' 

0u 
c,o(,(a,  t))+c257r(a, t)=,I'(~), t>0, ~=tl/2; 

lim u = U ( r ) ,  r>a;  
t--->O + 

u remains bounded as r ~ + m. 

(1.1) 

(1.2) 

(1.3) 

(1.4) 
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In the above, u ( r ,  t )  represents the temperature distribution, x the thermal conductiv- 
ity of the medium, p its density and c the heat capacity per unit mass. The physical 
parameters ~, P and c are here assumed to be constant. The cases v = 0 and v = + ½ give, 
in turn, boundary-value problems involving regions bounded internally by a cylindrical or 
spherical surface subject to a nonlinear condition. 

It is assumed that the prescribed functions qb(u(a, t)) and ~(~)  are analytic in their 
respective arguments so that, if we set u a - u ( a ,  t ) ,  then 

¢ ( u o ) =  E ° ' ~ , u J n .  (1.5) 
n = 0  

and 

q[('O) = E ~n~n/rl! (1.6) 
n = 0  

where 

Cn - d"¢/du~" I u°=o, 'In - d n ' l ' / d o " l , = o  • (1.7,1.8) 

The solution of the nonlinear boundary-value problem (1.1)-(1.4) is now sought in the 
form 

u =  r o + ~ an(r)~?"i" erfc[R(r)~/-11 (1.9) 
n = 0  

where the iterated complementary error integral i n erfc ~ is defined recursively by 

i n e r f c ~ = / ~ i  n - l e r f c y d y ,  n ~ Z  +, (1.10) 

i ° erfc ( = erfc ~ = 1 - erf ~ = e -y dy ,  (1.11) 

and where the error integral erf ~ is given by 

2 
err = io e - ;  d y. (1.12) 

If we set 

~ ,  = ~?"i n erfc[ R(r)•-l], (1.13 t 

then it is seen that 

3qb _ R'~n-l i  " - l e r f c [ R ( r ) ~ / - q  = - R ' d P  n 1, (1.14) 
Or 

~ 2 (I)n __ 
R " ¢ . _  1 + R'2ep._2, (1.151 

0r 2 

0 ¢ n  _ ~ . - 2  
- -  ( , i  n erfc[ R( r )~ / - l ]  + R , - ' i  n-1 erfc[ R ( r l T / - '  ] }. (1.16) 

0t 2 



But 

ni" erfc ~ + ~i "-1 erfc ~ = 1in-2 erfc ~, 

so that (1.16) yields 

Og9. _ l~f_2i._2erfc[ R(r)~/_l]  = ¼~n-2. 
at 

Now, (1.9) may be written as 

u = T O + E a . ( r )¢~ .  
n = 0  

whence, on use of (1.14), (1.15), and (1.18), we obtain 

~U ao oo 

0-7 = E a ' . ~ . -  R' E a .~ ._] ,  
n=0  n=0  

aZu -- E a'.'*. - 2R '  2.. a'n~._ , - R"  Z a r~._, + R '2 E an* . -2 ,  
0r2  n=0  n=0  n=0  n=0  

~/'/ 1 o0 

n = O  

It is noted that in the above we adopt the notation 

¢ _ .  = ~ - " i - "  e r f c [R( r )7 / - ' ] ,  

where 

i -"  erfc ( =  ( -  1)" d" erfc ~ /d(" .  

Substitution of (1.20)-(1.22) into (1.1) now yields 

oo 

~_, [ K { ra'/ + (2v + 1) a'. } *~ - r { 2rR'a" + rR"a .  + (2v + 1) R'a n } e . _ ]  
n = 0  

+r{tcR'2-1pc}a.~n_2] = 0 ,  

and the independence of the terms in ~. ,  n = 0, 1, 2 . . . . .  requires that 

K { ra" + (2v + 1)a;  } - K {2rR'a'.+ 1 + rR"a.+ 1 + (2v + 1)R'a.+ 1 } 

+ r { ~ c R ' 2 - ¼ p c ) a . + 2 = O ,  n = 0 ,  1 ,2 . . . . .  

while the terms in • 1 and ~_ 2 successively yield 

- ~ ( 2 r g ' a ;  + r g " a o  + ( 2 .  + 1 ) R ' a o  } + r {  ~R '~ - ~p~  } a l  = 0 
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(1.17) 

(1.18) 

(1.19) 

(1.20) 

(1.21) 

(1.22) 

(1.23) 

(1.24) 

(1.25) 

(1.26) 

(1.27) 
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and 

r{KR'2-140c}ao=O. (1.28) 

Thus, if a o 4: 0, or if a o = 0 and a I 4= 0, then 

~R '2 - ~pc = 0 (1.29) 

so that R ( r )  = R + (r) ,  where 

1 
R e ( r )  = +_ (4k) , /2(r  a ) + R + ( a )  (1.30) 

and k = x/pc is the diffusivity of the medium. In the sequel, we set Re(a )=  O. 
Accordingly, we obtain the representat ion 

u= T o+ ~_, {a+~(r)~"i " erfc[R+(r)~ -1] +a:(r )~" i"  er fc[R-(r )~- l ]} ,  (1.31) 
n = 0  

where the aft(r) are determined iteratively by the differential-difference relations 

+_2raft~_l + (2v + 1)aft+l - (4k)l/2{raft"+ (2v + 1)a f t ' }  = 0, (1.32) 

n = 0 , 1 , 2  . . . . .  

2raf '  + (2v + 1 ) a ~  = O. (1.33) 

Thus, 

+r'2.+"/2a-++, = +a"+"/2aft+, + ( k / ' / 2 / r ( ° 2 ' ' a f t ' )  ' -  
- -  J a  O(2v+  1)/2 do, 

n = 0 , 1 , 2  . . . . .  

a ~ ¢ 0 ,  

where here and throughout,  barred quantities denote values of r = a. 

(1.34) 

2. The initial condition 

The  expression (1.31) shows that 

lim u = T 0 + 2  ~ 8 , ( r - a ) "  
t~O+ n=0 (4k )"/2n! ' 

(1.35) 

r > a, (2.1) 
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since 

lim t " / S i ~ e r f c ( ( r - a ) )  '~o+ (4kt)1/2 = 0 (2.2) 

and 

lim t"/2i~erfc{ ( r - a ) )  2 ( r - a )  ~ 
t-,o + (4kt)1/2 (4k)~/2n!,  r > a ,  n=O,  1 ,2  . . . . .  (2.3) 

In the half-space case v = - ½ the differential-difference relations (1.26)-(1.27) for the a S 
admit the solutions 

{ r0, 
a S = 8,, = 4(k,,,/2U(,,)(a, 

\ 1 \ !  

2 

n = O ,  

, n ~ - Z  +, 

(2.4) 

which allow the general analytic initial condition 

(r a)  n 

lim u =  E U(n)(a) n( " - U(r) (2.5) 
t~O+ n=O 

to be satisfied. 
If v ~ - ½, the arbitrary parameters aS are available in the expressions for the a S for 

approximation to a specified initial temperature distribution U(r). 

3. The nonlinear boundary condition and boundedness 

Since 

u = T ° + ~ = o  ~ a~+(r)~i ~ ertc[(4k)l/2,q + a S ( r ) ~ q " e r f c  

and 

tr-a,  
Or n=0 (4k)1/2~ I 

( r - a )  ]} (3.1) 
(4k)l/2n 

+ [ a. ~fl-li. I ( r - a )  
(4k)' /2 erfc (4k?~--~ 

(r - a) -~ erfc 
+ aS'~"i" erfc (4k)1/2 / (4~1/2 (4k)1/2~/ (3.2) 
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it follows that 

u(a, t ) =  T O + ~ [a + +a2]~ln/2"F(½n+ 1)], (3.3) 
n=0 

~Tr (a,~U t ) =  .=o ~-" { [a n-+' + a ; ' ]  r(/[2nF(½n + 1)] 

+ (4k)l/a ~n-x 2 n - i F ( @ +  1 (3.4) 

since 

i n erfc(0)=l/[2"r(½n + 1)], n =0 ,  1, 2 . . . . .  (3.5) 

Thus, the nonlinear boundary condition (1.2) requires that 

q ~ [  T°+ n=o ~ [a+ + a~] ~n/[2nF(½n + 1)]] 

+c=n=o ~ {[<' + <'] "n/[Z°r(½" + all 

+ ['~- -'+] /[ _~.!+ )]}] = ~o+n~n/n (3.6) 

Following the method adopted by Tao [1] in his analysis of half-space problems, the 
conditions imposed on the a~ by the relation (3.6) may be obtained by application of the 
result 

Ou DN[c,~(u(a, t))+C2~r(a, t)] n=0=~N, N=0,1,2,. (3.7) 

These conditions are set forth below: 
N = 0: In this case, we obtain 

[ 1 c,dP [ T O + [a~- + ao] i  ° erfc 0] + c 2 ao-' qt_ do  t -k )1/~ ( a l  - a~-) i° erfc 0 = ~o, 

(3.8) 

together with, if c2 :/= O, 

- -  -+ (3.9) a o = a o . 
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N = 1: Since 

DngP( ua) = ~'(  uo) Dnua, 

it is seen that 

q(I) '[T o + [d~ + do] i  ° erfc O] (a~ + 5~-1i I erfc 0 

+c2[a?' ~ 1 7 f  i 1 erfc 0 = ~ .  (3.10) 

N = 2: Since 

D2*(uo)  = * " ( u . ) (  Dnu~)2 + ep'(ua)D2ua, 

it follows that 

c , { ~ " [ T  o + [a~ + a o ] i  ° erfc 0 ] ( (a~  + a~-)i' erfc O) 2 

+ ~ ' [ T  o + [~-  + a o ] i  ° erfc 012!(~- + a 2 ) i  2 erfc 0} 

[ --+1 _ _ a 3 - a ~  2! i  2 e r f c 0 = ~ 2 .  (3.11) + c  2 a f '  + a 2' + (4k)l /2 

N: In general, Faa de Bruno's theorem [7] shows that 

N , ~n( i )  I 

D U [ * ( u ( a ' t ) ) ] l ' = ° = N ! n = o  y'~ ZN(Ua)-~U~ ,=0' N = l , 2  . . . . .  (3.12) 

where 

N 

ZN(Ua) = E H (D~Ua/F!)BN"'r/~N .... !,  U = 1, 2 . . . . .  ( 3 . 1 3 )  

flu . . . .  r = l  

and the sum Y~BN .... is extended over all multinomial coefficients, that is, over non-nega- 
tive integers fin .... such that 

N N 

~_, BIN .... = n, ~_, rflN .... = N. (3.14,3.15) 
r = l  r = l  

Since 

D~ual ,=o=(  a+ + d T ) r ! i  r e r f c0 ,  r = 1 , 2  . . . . .  (3.16) 
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and 

N0U - [ 
D, ~Tr(a, t) =0= a [ v ' + a U ' +  (4k) 1/2 

N ! iN erfc 0, (3.17) 

N = 0 , 1 , 2  . . . . .  

the condition (3.7) yields 

N ~/=0 [ c, E z ~ ( u o ) a ~  - -  n=0 OU-"'~a -'k C 2 aN '+  a N' ; k i  1-)5 ]iN erfc 0 = N, , (3.18) 

N = 1 , 2  . . . . .  

where 

N 
Z~(Ua) = E U [(aT + a T )  ir erfc 0] ~ / ~ N  . . . .  !" (3.19) 

~.,,. r=l 

It is recalled that the a u are determined by the initial condition (1.3). In what follows, 
we proceed with the initial condition that requires 

lim u = T  o, (3.20) 
t~0 + 

so that an(r ) = aS = 0, n = 0, 1, 2 . . . . .  and the relations (3.8)-(3.11) yield 

a 0-+ = aft = 0 ,  (3.21) 

-+ 
cad~(To) c 2 a ~  - ¢o, (3.22) 

(4k) 1/2 

1 

2F(~)  
<~,'(r0)a? + c2{a?' (4k) 1/2 

¢1 (3.23) 

and 

[ ][  ] --+ C2 _ 
(4k)1/2 = ¢ 2 .  

(3.24) 

In general, (3.18) and (3.19) show that 

c2 [ +] 
cl E Z N ( T o ) ~  + d~v' aN+l = .=o 0ua .=o 2NF(½N+ 1) (4k)  '/2 

CN (3.25) 
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where 

= -+ r r /flu . . . .  !. (3.26) ZN(To) E f i  [ar / 2  I~(~-k - 1)]/3'`' ..... 
fl,x, .r n=l 

The recurrence relation (1.34) with n = 0 now shows that 

r ] ' (3.27) 

where, from (3.22), 

(4k) 1/2 
6~- - - -  [c l~( ro)  - •o], Cz • 0. (3.28) 

c2 

Thus, from (1.34) with n = 1, 

( - [ -al]-+]al (3.29) 
+ a~<2~+a)/2[_+ )l/2(2u+l)(2u 1) 1 

a2 = r ]  [a 2 + ( k  4 r 

where (3.23) shows that 

d~=(4k) ' /2[ c'cnq-~2 " ~ ' / O ) d ~ - - c ~ 2 F ( 3 ) ~ l - ( ~ - ~ )  d~]a ' c24=0" (3.30) 

In general, the a + may now be readily generated by combination of the recurrence 
relations (1.34)-(1.35) and the relations (3.25)-(3.26) which determine the constants of 
integration -+ a n • 

To complete this section it is noted that, since aS(r ) = 0 in the present discussion, 

r ~  ,=0 (4k)1/27/ 

= To, (3.31) 

and the boundedness condition (1.4) is met. 

4. The Stefan-Boltzmann radiation condition 

In this section we consider in detail the results of the last section as they apply to a body 
at absolute temperature u(r, t) subject to black-body radiation into a medium of absolute 
temperature T e. The boundary condition for this case is 

°C[u.(a, ,)_ T; ] f i r ( a ,  t)=--~-- (4.1) 

where o is the Stefan-Boltzmann constant and E is the emissivity of the surface. We also 
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assume that the initial temperature is constant and equal to T O . It will be convenient for 
our numerical results obtained in the next section to recast our boundary-value problem 
in terms of dimensionless variables. 

We introduce the dimensionless variables 

~t = u / T 1 ,  ~ = r / a ,  ~= kt/a 2, 
oEaT 3 

2he = T e / Z l ,  2ho = Z o / Z l ,  ol = - -  
K 

(4.2) 

where the reference temperature T 1 is taken to be the initial temperature T O if T O 4= 0, 
(and hence 2h0 = 1). If T O = 0, we take T 1 = Te, (so that 2h e = 1). Our dimensionless scheme 
then includes the case of non-zero initial temperature and zero initial temperature. The 
trivial case in which initial and ambient temperature are both zero is excluded. If  we use 
the dimensionless variables (4.2) but omit the carets, the nonlinear boundary-value 
problem becomes 

0 [ 2v+IOU) =r2V+ 18u 
-~r~ r -~r 8--t- ' r > l ,  t > 0 ;  (4.3) 

u(r, 0 +)= T O , r> 1; (4.4) 

0u(1, t)=a[u4(1, t ) -  T_ 4] t > 0 .  (4.5) 
Or 

The solution to this problem can now be written down by employing the results of the 
previous section with c~ = - a ,  c 2 = 1 together with 

- a T J ,  r/--O, 
~ " =  O, n = 1 , 2  . . . . .  

and ~ ( u )  = u 4.  In addition we must set a = 1, k = 1 to take into account the non-dimen- 
sional scheme. We find that 

oo 
u(r, t ) =  To+ E a , ( r )~ /" i "  erfc(R~/-1),  ~/= x/rt -, (4.7) 

n=l 

where 

r - 1  
R -  2 '  (4.8) 

and the a ,  satisfy 

2ra'+,+(2v+l)a,+ 1 - 2 [ r a ' + ( 2 v + l ) a ; ]  = 0 ,  n = 1 , 2  . . . . .  (4.9) 

al(r)=Eq(1) (2"+1,/2. 
(4.10) 

In obtaining this last result we have used a~ = 0 and defined a ,  = a ,  + . Equation (4.9) is 
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analogous to the transport equation of ray-series methods employed in wave-propagation 
problems [3], [6]. Its solution is readily found to be 

{1~(2v+1)/2(- ~ } 
an(r)=~r } lan+ anj(r l -J-1) ,  n = 2 , 3  . . . . .  ,~n--an(1), 

j = 2  

(4.11) 

where the anj satisfy the recurrence relations 

( 2 v -  1)(2v + 1) _ 
4 al '  

( 2 v -  1)(2v + 1) [ 
an+l,j+l = 4 an - k 

( 2 v -  2 j +  1)(2v + 2 j -  1) 
4 j  

j = l , n = l ,  

~-~,an, ], j = l , n > 2 ,  
i=2 

a,j, 2<~j<~n, n>~2. 

(4.12) 

The coefficients in (4.7) can now be completely determined through (4.11) and (4.12) 
provided we know a n. This quantity is computed using the boundary condition on r = 1. 
Employing qb(u)= u 4 and (4.6) in (3.25) yields 

al= -2a(T 4 -  T4), (4.13) 

G+l=2a'.-2"+'r(l+½n)a Y'.An_i_k+lAk+ , ~_, A,-k+lAk+a , 
i = 0  k = 0  k = 0  

(4.14) 

! 
n 1 2, , - '  - an(l),  

where 

A I ~  To,  (n l) An=an_1/2n-1F 1 + ~  , n = 2 , 3  . . . . .  
(4.15) 

We may now compute as many terms as we wish in the series (4.7) by employing the 
sequence of formulae (4.11)-(4.15). At each step, an+ 1 is computed from a n by finding 
a,+1o+1, (1 < j <  n), using (4.12) and by finding an+ 1 from (4.14), where a' n in (4.14) is 
found by using 

a 1 = _ a l ,  

a ' n = - ( ~ ) a , +  ~ a n , ( 1 - j ) ,  n > 2 .  (4.16) 
j = 2  

To illustrate the use of the above formulae, let us calculate explicitly the first two terms 
in the series for u(r, t). From (4.10) and (4.13) 

a , ( r )  = 2a(T 4- T,4~[ ! ) (2v+1}/2 
Ol[r (4.17) 
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Setting n --- 1 in (4.14) gives 

1 

a 2 = 2a~ - 4ar(~) £ 
i = 0  

~ Az-i-kA~+l Ai-k+lAk+l 
k = 0  k=O 

= 2a - 

Employing (4.16) to find ~i and (4.15) to obtain A~, A2, (4.18) yields 

Now 

az(r)=(1)(2"+l)/2( - 
~a2 + a22( 1 -  1)} 

where, from (4.12), 

- 1 ) ( 2 .  + 1) 

4 al" a22  = 

Thus, 

a2(r)=(l)~2~+l)/2[_2(2112-----~l +4otT3)+ ( 2 v - 1 ) ( 2 v + l ) ( 1 4  r - 1 ) ]  

(4.18) 

(4.19) 

X 2 a ( T ~ -  T4). (4.20) 

so that (4.17), (4.20), in (4.7) yield the small-time approximation 

(r_l)  2i2 (r l) u=T o+al(r)~i 1 erfc ~ + a 2 ( r )  erfc ~ . (4.21) 

To proceed to calculate more terms by hand is unwieldy. Nevertheless, the recurrence 
formulae (4.12) and (4.14) are in a form suitable for coding in a programming language. 
We shall explore this idea in the next section. In particular we shall use the Bergman-type 
series solution to obtain numerical results for the Stefan-Boltzmann problem. 

5. Numerical results and Pad4 extension of the Bergman series 

Numerical results for the Stefan-Boltzmann problem are obtained from the formal series 
solution (4.7). We begin by programming the sequence of recurrence formulae (4.12)-(4.16) 
constructed in the previous section. We may thus sum as many terms in the series (4.7) as 
we wish. In view of the complicated nature of the recurrence formulae it is difficult to 
discover the region of convergence of the formal series solution. For practical purposes 
this is not necessary. By using an increasing number of terms we can estimate the range of 
the independent variables for which the series solution is convergent. 



The quantity 

a .  - 2"F(1 + ½n) = l / i "  erfc(O), 
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(5.1) 

which appears in (4.14), grows rapidly with n. It is therefore necessary to scale out % in 
order to numerically implement our recurrence formulae. To this end let 

a.(r) = b.(r)c%, (5.2) 

so that 

u(r, t)= To+ ~ b.(r),"f.(R~-l), (5.3) 
n=l 

where 

f.(z) = a.i" erfc(z). (5.4) 

The functions f . ( z )  satisfy the recurrence formula 

Z 
f . ( z ) -  .vT_ f._l(Z)+L_2(z), (5.5) 

where 

O/n 
T. = (5.6) 

O~n+l 

The sequence T. can be calculated using 

1 1 
T..[._l-Z(n+l), n = 1 , 2  . . . . .  To = ¢~_ . (5.7) 

To compute the functions b.(r) we employ the following formulae obtained by using (5.2) 
in (4.10)-(4.16): 

( 1 1 (2v+1)/2 
b,(r) =])'l,r] ' (5.8) 

~r][ ll<21"+l)/2fbt n ~ }, b.(r)= + --b.j(ri j - l )  n > 2 ,  (5.9) 
j=2 

b. =- b.(1) ¢5.10  



158 

bn+ l , j+ 1 = 

( ( 2 v -  1)(2v + 1) ~31, 
T1 4 

( 2 v -  1)(2v + 1) [ ~ ] 
Y" 4 bn- bni, 

i=2 

( 2 v -  2 j +  1 ) ( 2 v  + 2 j -  1) 
3" 4j b.j, 

j = l ,  n = l ,  

j = l ,  n>~2, 

2<~j<~n, n>~2, 

(5.11) 

21 2o/(To 4 -  r J )  
7~- ' (5.12) 

/ )} 
k=0 

n = 1, 2 . . . . .  30 = T 0, ( 5 . 1 3 )  

? ~ = -  (~-f -~-)b  1, (5.14) 

n 

b,~ = - + Y~ b,,j(1 - j ) ,  n = 2, 3 . . . . .  (5.15) 
j=2  

We concentrate on obtaining results for the surface temperature u(1, t) since this is 
most frequently the quantity of physical interest. Since 

f~ (0) = 1, 

we have from (5.3): 

u(1,  , )  E -  " = = b a l l ,  D o T o . ( 5 . 1 6 )  
n=0 

Summing this series for various choices of the dimensionless parameters reveals that it is 
convergent only for small values of 7/. To obtain an accurate global approximation to the 
surface temperature we now employ Pad6 approximants. 

By definition, [9], 

[ L/M] = PL ( ~I )/QM01) (5.17) 

is the L, M Pad4 approximant to u(1, t) where Pz., QM are polynomials of degree at 
most L, M respectively and their coefficients are determined by 

P L ( ~ )  L + M  
E b.~" + O(@+M+') • (5.18) 

OM(~) .=o 

If we let 

eL(n)  = 

L+I  M+I 
E P,~I "-1, QM01)= E q,~l "-1, (5.19) 

n=l  n=l  
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then f rom (5.18) we can easily construct  a system of linear equat ions for the coefficients 
of  PL(~/) and QM(~).  

In  order  to obta in  a good approx imat ion  for u(1, t)  we should build in any  informa-  
tion available about  the surface temperature .  In part icular,  we know that  

lim u(1,  t) = T~. (5.20) 

To obtain  this asymptot ic  behavior  we choose 

L =  M,  qt.+l = 1, PL+I = Te" (5.21) 

The  coefficients in the resulting rat ional  approx imat ion  are then found to satisfy 

bi+z--iqj = TeSL+a.i+l - a i ,  
j = l  

i =  1 . . . . .  L ,  (5.22) 

i 

P i =  ~ bi_sqj, i =  1 . . . . .  L.  (5.23) 
j = l  

We denote  by  FL/r(~) the app rox iman t  which uses the coefficients obta ined  by  solving 
(5.22) and (5.23). Typical ly  L will be no greater than 15, so no effort  at a lgori thm 
efficiency is required. We simply employ  a s tandard  l inear-equat ion solver and then 
evaluate the corresponding rat ional  function. As an aid in selecting L,  we use the fact 
that  u(1, t)  is neither zero nor  singular for t > 0. Thus,  in choosing an appropr ia te  value 
of  L we rule out any  rat ional  approx imat ion  FL/L(~) whose numera to r  or denomina to r  
has a zero in 7/> 0. 

Numer ica l  results are obta ined for T O = 0 (so T e = 1) and for T O = 1, Te = 0.5 and are 
1 displayed graphically in Figs. 1 and 2. We consider the cases v = - ½, 0, ½, where v = 2 

cor responds  to a half-space,  while v = 0, 1 correspond respectively to regions bounded  
internally by  a cylinder and a sphere. All results are for  a = 1. When  v = - 1 there is no 

1,0 

0.8 

0.4 

0.2 

v =-1/2 

~t c :t© itc 
0 . 0  ' " '  ' ' " '  ' . . . .  - ' , , , , 

0.2 0.4 0.6 G8 I.O 1.2 1A 
t 

F i g u r e  1.  V a r i a t i o n  o f  s u r f a c e  t e m p e r a t u r e  w i t h  t i m e  f o r  T O = 0 ,  T e = 1,  a = 1. 
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Figure 2. Variation of surface temperature with time for T o = 1, T, = 0.5, a = 1. 

natural reference length and this choice of a corresponds to choosing ~/eoT13 as the 
reference length. 

By summing an increasing number of terms in the series (5.16) we can estimate the 
interval of convergence of this series. The quantity tc appearing in Figs. 1 and 2 is an 
estimate of the non-dimensional time beyond which (5.16) is divergent. 

6. Concluding remarks 

It is a straightforward procedure to construct Bergman-type series solutions for non-linear 
boundary-value problems associated with the heat equation. As demonstrated here, 
numerical results for the surface temperature obtained by summing such series are valid 
only for small time. This paper shows that numerical results can be obtained for much 
greater times by employing Pad6 approximants. In fact good global approximations are 
obtained for the surface temperature by building in the asymptotic limit and by sensibly 
choosing the degree L of the rational approximation Fc/L. We picked L to be less than 
15 and from that range chose rational functions which are neither singular nor zero. For 
each set of results obtained, two approximants from this admissible set were employed. 
Results obtained from such pairs of rational functions were found to agree at least to 
three figures and for some sets of results to six figures throughout the entire domain. This 

1 fact gives confidence in our numerical results. Also, the case shown in Fig. 1 for u - 2 
has been considered in [10] and results found there are graphically indistinguishable from 
ours. Since the construction of Bergman-type series is a direct procedure which involves 
only simple operations, this method allied with Pad6 approximants provides an important 
new means of obtaining numerical results from non-linear boundary-value problems 
associated with the heat equation. 
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